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In this work, we identify an instability in strictly upwind finite difference schemes
when they are applied to the Euler equations in more than one space dimension.
We suggest that the well knowsarbuncle phenomends a manifestation of this
instability. The usual dimension by dimension extension of one-dimensional upwind
schemes to the multidimensional equations of gas dynamics often yields poorly re-
solved stationary (or slowly moving) shocks when applied to high Mach number grid
aligned flows on structured grids. Through linear analysis, we show that this failure
is an instability which is the result of inadequate crossflow dissipation offered by
strictly upwind schemes. In addition, we offer a new parameter free and easy to im-
plement multidimensional, upwind dissipation modification that provides sufficient
crossflow dissipation to eliminate the instability. This new approach is applied to the
problem of simulating a three-dimensional, axisymmetric, hypersonic, chemically
reacting air flow typically encountered during spacecraft reenteyLoos Academic Press

1. INTRODUCTION

In this paper we focus on the problem of solving the multidimensional Euler equat
on structured grids by finite volume schemes basedstantly upwind numerical flux
functions. Examples of these upwind fluxes include Godunov's flux [5] and Roe’s flux [
When applied to the one-dimensional Euler equations, these schemes have the de
property of accurately resolving shock waves as well as contact discontinuities. Expal
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FIG. 1. Mach number isocontours for the 2D Mach 15.3 cylinder: (a) First-order Roe’s scheme with |
entropy correction; (b) First-order Roe’s scheme with a typical 1D entropy correction; (c) First-order Godunc
scheme.

waves can generally be well resolved either by use of entropic schemes such as Godui
or Osher’s [11], or by some suitable modification to nonentropic schemes such as Rc
However, naively inserting a one-dimensional, strictly upwind numerical flux function into
multidimensional finite volume formulation may often lead to a seriously flawed numeric
algorithm. It is often observed that strong slowly moving or stationary shocks aligned w
the spatial grid break down in a totally nonphysical manner. Garbuncle phenomenon
[2,13,21] is the name often used to refer to a stationary bow shock that contains a spur
bump. The work of Quirk [15] is particularly enlightening here. In Fig. 1, we illustrate thi
flaw by the well-known example of a high speed, here Mach 15.3, inviscid flow arounc
two-dimensional cylinder. In Fig. 1a is the result from a first-order Roe scheme withc
entropy correction. In Fig. 1b is the result of the Roe’s scheme this time employinc
standard one-dimensional entropy correction (see Hx.ii@ection 2). Finally, in Fig. 1c

is the result from the first-order Godunov scheme before convergence to steady state. V
the carbuncle is less noticeable in the Godunov result, at this time there is still a notice:
glitchat the leading edge of the bow shock. Eventually, this glitch will weaken and propag
downstream along the shock.

The usual procedure to cure the carbuncle flaw is based onatheg; parameter-based
switch to an extremely dissipative convective flux such as Lax—Friedrichs (or some ot
nonstrictly upwind flux) in regions deemed as susceptible to the carbuncle phenomei
Beside introducing a great deal of complexity to the computer program, this appro:



DISSIPATION FOR UPWIND SCHEMES 513

3.0000 1
|

2.5000

[av]
-
=
—
o
o
<o

1.5000 | /
1.0GO0
/

0.50000 |

0.50000  0.0000

0000 ¢ = il
~2.0000 -15000  -1.0000

-~
]

3.0000

2.5000

2.0000

1.6000

1.0000

0.50000

(v

—0.50000 0.0000

0.0000 ;
-2.0000 -15000 -1.0000

FIG. 1—Continued



514 SANDERS ET AL.

generally leads to a scheme that has excessive numerical dissipation in regions where
particularly harmful, such as boundary layers—shock interaction, slip surfaces, and reg
of multicomponent nonequilibria.

The contents of this paper are organized as follows. Some preliminary setup is conta
in Section 2. Additionally, numerical dissipation is discussed, the term strictly upwind
defined, and several well-known two-point numerical fluxes are classified. In Section
and 4, we explore what we believe is compelling evidence as to the cause of the carbu
phenomenon. Section 3 is devoted to numerical evidence and Section 4 is devoted to
lytical evidence. We show that the truncation error equation to upwind schemes applie
the Euler equations is linearly unstable when applied to certain flows with strgrighy
alignedstationary shocks. We use the term grid-aligned shocks to denote planar shocks
are perpendicular to the flow direction (e.g., a 1D shock embedded in 2D). It is our be
that the bow shock problem illustrated above is in reality a grid-aligned shock proble
The main topic of Section 5 is the introduction and analysis of a multidimensional dis
pation which is shown to eliminate the carbuncle flaw in all presented examples. As v
be seen, this dissipation is supported almost entirely within shock layers and at the s
time leaves perfectly grid aligned shocks resolved exactly the same as would come f
the one-dimensional calculation. In Section 6, the method of Section 5 is extended to t
order schemes and is applied to a high speed flow with nonequilibrium multicompon
chemistry.

2. STRICTLY UPWIND DISSIPATION AND THE EULER EQUATIONS

Finite volume schemes for solving divergence form hyperbolic systems in more than «
space dimension are obtained by considering the control volume balance equation

9 de+/ F(U)-ndo =0, 1)
at Je ac

whereC denotes a control volume amdts outward normal vector. Throughout this work,
we assume that the space partitioning is logically rectangular. The usual approach take
construct dirst-orderfinite volume scheme from this formulation is to regakds cellwise
constant and then replace the cell boundary fl&gb - n by a one-dimensional, two-point,
numerical flux functiorhg., (UL, Ur), whereU_ denotes the value of the solution within
cell C andUg the value of the solution in the outward adjacent cell. Consistency is e
forced by requirindhge ., (U, U) =F(U) - n. In this context, any one-dimensional, Lipschitz
continuous, two-point numerical flux function takes the general form

1
he.n(UL, Ur) = E[F'n(UL) +F-nUgr) — MU, Ug, n)(Ur — Up)]. 2

The generality of the specific form indicated in (2) is seen by defining the vector dissipat
D(U., Ug, n) via the relation

1
he.n(UL, Ur) = E[F -n(U) +F-nUg)] — DU, Ug, )

and by noting that, since flux consistency impli2zdJ, U, n) =0, the fundamental theorem
of calculus implies

1

d
D(UL. Ur, n>=/ 25 DUy — AUyo, Uy + AUy6) 46,

0
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whereUy = 2(Ugr+UL) and AUy = 3(Ug — UL). (For nondifferentiable but Lipschitz
numerical fluxes, this is interpreted in an a.e. sense.) From this, the chain rule yiel
formula for the dissipation matrik (U, Ug, n).

We use the expressiastrictly upwindto signify two-point, numerical flux functions
whose dissipation matrices satisfy

M(U, U,n) = |(F-n)' ()| = RU, M)A, n)|R™(U, n), 3

whereA (U, n) andR(U, n) are the matrices of eigenvalues, respectively right eigenvectc
to the Jacobian df(U) - n. With this definition, we find that thiuncation error equation
for all continuous in time finite volume schemes employing strictly upwind numerical fl
functions take the form

oU f(U U lAa AUU lAa BUaU 4
¥+—( ( ))+—(g( ) =3 X—(I ( )I—) . ya_y(| ( )|3_y)’ (4)
on a uniform two-dimensional cartesian grid. Abové)) = (f (U), g(U)), and the strictly
upwind dissipation matrices are given py(U)|=|f’(U)| and|BU)|=|g'(U)|. Ax and
Ay represent a measure of grid refinement. It is important to stress that all schemes
ploying two-point strictly upwind numerical flux functions share this same truncation er
equation. It should also be noted that for these schemes, the dissipation mat(idgsor
|B(U)| fail to be of full rank when one or more eigenvaluesftgU) or g’(U) vanish.

The two-dimensional, multicomponent, Euler equations for a compressible chemic
reacting gas are given by

01 p1u P1V
U |, d ' 9
AV FU) = Pl 4 — pall +— Pnt =, (5
ot at ou X pU2 4 P ay puv

PV ouv pv? + P

pe (re+ P)u (pe+ P)v

whereps is the partial density of the fluid'sth chemical specieg; = > ps is the fluid’s
total densityV = (u, v) is its velocity, ance is the total energy per unit mass. The scale
pressureP is given as a function of the state variablesand the internal energy per
unit mass =e— %|V|2. The chemical reaction raf is also a function ops ande. The
flux Jacobians of the Euler equations have real eigenvalues and are diagonalizable
reasonable equations of state. The eigenvalu€$@f) (thex direction flux Jacobian) are
u + ¢ andu, where the latter eigenvalue has multiplicity- 1 and the speed of souieds
given by

Z osP P P.>0 for physical equations of state.  (6m)

The fields associated to eigenvalugs= u & c aregenuinely nonlinear

Vurs - T+ #0,
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whereas the + 1 fields associated to eigenvalue- u arelinearly degenerate
Vuhr -1 =0;

see [8]. In the last section, the full multicomponent Euler equations are studied. Ul
then, only a single componet = 1), diatomic, perfect gas is considered, in which case
P = (y — 1)pe, wherey = 1.4 is the ratio of specific heats, and

=y(y — De. (69)

We conclude this section by checking several well-known two-point numerical flux fun
tions to determine which are and which are not strictly upwind when applied to the tw
dimensional, single component Euler equations. The rotational invariance of the El
equations in several space dimensions allows us to restrict our attentiorxtalitteetional
flux only. This is denoted by (U) below. It is a straightforward exercise to confirm that a
two-point numerical fluxh; (U, Ug) consistent tof (U) is strictly upwind if and only if
for all admissible stateld, andUg sufficiently close together

(f(UD) + f(Ur) — 2h¢ (UL, Ur) = [ f'(U)[(Ugr — UL) + O(JlUr — UL?),  (7)

whereU = %(UL + UR). Thatis, if (7) is satisfied for a particular numerical fluxU,_, Ug),
thenhs is strictly upwind. Otherwiseh¢ is not strictly upwind.
The first numerical flux we investigate is the van Leer upwind flux [20]. It is given by

he (UL, Ur) = fH(UL) + f~(Ur), (8.vL)
where
f (), if u>c,
0, if u<-—c,
. zoc(u/c+ 12 = f
PO=1 7@ -vu+20/y _
f+ , otherwise
1 v
-1 2 2 UZ
i <((V2<y)2uj1>® + 7)
and

f-(U) = f(U) — T ).

If statesU; andUg are both supersonic, then clearly the strictly upwind condition (7) aboy
is satisfied. However, for subsonic flows, the van Leer flux fails to be strictly upwind. Tt
can easily be seen by considering particular stdteandUg of the form

0 0
0 0
URr= 0 + 55 |

oe 0
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which defines a weak stationary shear wave. By observing that the second vector above
eigenvector tof'(p, 0, 0, p€e) associated to eigenvalue= 0, one finds that the right-hand
side of (7) reduces t®(|Ug — U, |?). A simple calculation shows the left-hand side reduce
toc/2(Ur — UL). Thus, the van Leer flux fails to satisfy the strictly upwind criterion for a
admissible states.

The second numerical flux we investigate is the Godunov upwind flux [5]. It is given &

hs (UL, Ug) = T (R(UL, Ur)), (8.G)

whereR(U_, Ur) denotes the solution to the Riemann problem defined by left and ri
statesU, , Ug along the vertical space-time rag/t =0. The Riemann problem here is
resolved into four waves (actually three discernible waves) and five constantdtates
Up, Uy, ..., Us=Ug. Itis shown in [8] forU_ andUg sufficiently close together that

Uk = Uk_1 + k(U) - (Ur — UDre(U) + O(JUg — UL 1?),

where the left eigenvectolisare normalized so thgt- r, = 1. Moreover, by using the weak
formulation of the Riemann problem, one can show that

1 4
FRUL, Ur) = 5 <f<uL> + f(Ur) — > W(Uk 1, uk>> ,

k=1
where
[s(Uk_1, U |(Ux — Ux_1), if wavek is a shock,
W(Ug_1, Uy) = A’Xk"((uuk'i) |&|rk (&) d&, if wavek is a rarefaction,
Ak (U |(Ux — Ug_1), if waveKk is linearly degenerate.

Above, the eigenvectors for the genuinely nonlinear fields (in particular the rarefac
waves) have been normalized so tWat., - r, = 1. Therefore,

(Ui = (U1 + Ik(U) - (Ur — Up) + O(JUr — U ?),

which shows

Mk (Uk) _ _ _
/ ! Er(&) d& = [M(W)]Ik(U) - (Ur — UD)r(U) + O(JUr — ULI?);
Ak(Uk-1)

s(Uk_1, Ux) above denotes the shock speed of the shock defined by BiateandUy. It
is also shown in [8] for statdd; andUg sufficiently close together that

S(Uk_1, Up) = Ak(U) + O(JUg — UL )).
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Combining these facts together, we easily compute that

4

3 WU 1, U = [ £/(U)](Ug — UL) + O(JUg — UL ),
k=1

thereby confirming that the Godunov flux is strictly upwind.

A straightforward modification of the previous argument will also establish that tt
Osher—Solomon flux [11] is strictly upwind.

We lastly consider the numerical flux of Roe [17] and some of its entropy correcti
variants. The Roe numerical flux is given by

1
ht (UL, Ug) = E(f(UL) + f(Ur) — | f'(Um)|(Ur — Up)), (8.R)

whereUy denotes the Roe average middle state. For the two-dimensional, single-corr
nent, perfect gas equationdy, is determined by

1 2 JoLad + /PR AR
= — + = ,
PM 4(\/ L+ /PR)T Om o+ R

whereq representsl, v, or enthalpyH =e+ P/p. Clearly, this scheme is strictly upwind.
Some variations are obtained as follows: Replac€Uy )| above by

R(U)|A (UL, Ur)|IR1(U),

whereU is either the Roe average ofp and Ug, or perhaps the simple averag_k-‘-;
%(UL + Ugr). (The midpoint average is considerably easier to incorporate into a mul
component calculation with extremely complicated equations of state.) One-dimensic
entropy corrections can be developed by takifigU, , Ugr)| = diag(||) with

M) = MU+, (9a)

A1) = max( (U)], ), (9b)

. A U)], if |x(U)| > 20,

| mejt ||my>n 00)
M (U)|%/4n + 71, otherwise

wheren =n(U_, Ug) > 0[6]. Clearly, ifn(U_, Ur) = O(JlUr — U_|), thenall resulting mod-
ified schemes above are strictly upwind. For the single component or multicomponent E
equations, a natural choice fgiis

1
n(Ur, Ur) > mlax(l?»l (Ur) — M (UD)D)
(10)

1
= §(|UR —uL|+Jcr —CL]).

All modifications to the basic Roe numerical flux given in (9)-(10) above adequately eli
inate the often observeskpansion shockroblem associated to the unmodified scheme
However, none adequately resolve the carbuncle problem. Figure 1b depicts the rest
modification (9b) to Roe’s scheme compared to the result of the unmodified scheme depi
in Fig. 1a.
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The grid used to generate the results in Fig. 1 is somewhat rough—unintentionall
originally. It was generated from a smooth coarser grid by linear bisection with bounc
points exactly fitted to the cylinder. Therefore, every other interior grid point differs frc
a smooth grid by at mosd (Ax?). Surprisingly, this small degree of grid error is sufficien
to obliterate the true solution of the flow problem. What is even more surprising, the res
depicted in Fig. 1 are not confined to the Roe scheme alone. All strictly upwind sche
discussed above yield more or less the same poor results on the given grid. Results cc
from van Leer’s flux and from the Lax—Friedrichs flux, on the other hand do not exhibit t
flaw.

3. INSTABILITY FROM STRICTLY UPWIND SCHEMES:
NUMERICAL EVIDENCE

Two-point, strictly upwind numerical flux functions were defined in the previous sectic
and it was seen there that all two-dimensional finite volume schemes employing these f
share the same truncation error equation. In particular, (4) is the truncation error equ
for a continuous in time, strictly upwind, approximating scheme on a uniform rectangt
grid. The following observation is informative when (4) is applied to the Euler equations
the initial data is one-dimensional and is associated to a one-dimensiorahfiid slowly
moving viscous shock profile (viscous with respect to the numerical viscémm A)),
then both numerical viscositie@Ax|A| and%Ay| B| simultaneously fail to be of full rank
at some point along the viscous shock profile. The maBixhas two eigenvalugs| =0
everywhere. The entropy condition requires that data at infinity associate&-ghack
(k=1or 4 profile satisfies.x(U_») > s> A(Us), Wheres denotes the shock speed anc
Ak is one of the acoustic eigenvaluesfto Therefore, ifs is sufficiently small] A| also fails
to be of full rank at some point along the shock profile since, at some pQigty + ¢ must
change sign. The truncation error equation applied to the Euler equations can be sl
to be linearly stable when the linearization is carried out around all admissibktant
states. Nevertheless, this loss of numerical dissipation leads one to naturally questio
stability of schemes sharing this truncation error equation when applied to perturbatior
strong and slowly moving numerical shocks. It is precisely this situation described ab
that will be investigated next by a numerical example.

The first two examples of this section are set up as follows. Consider a one-dimensi
shock tube with left and right states that correspond to a stationary, pressure ratic
1-shock. First-order finite volume schemes employing the Roe flux, as well as the God!
flux resolve this Riemann problem exactly on a Cartesian grid. We use this Riemann
however, on a two-dimensional finite volume grid which is very slightly perturbed in t
crossflow direction. One grid line aligned with the center of the stationary shock is modi
in a mass conserving manner; see Fig. 2. Hard wall boundary conditions are enforced :
the upper and lower walls:

(10+10“cogj 27/20), j), i =10 V] € [0,40],
@, otherwise (11)
AX = Ay =1

(Xi,sti,j)z{

We then start forward Euler iteration applied to both the Roe and Godunov finite volt
scheme on the perturbed grid, taking various time step sizes well withiDRhdimit.
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FIG. 2. The perturbed grid line is grossly exaggerated for clarity.

After several iterations the (in)famous carbuncle phenomenon appears for Godunov
Roe as depicted in Figs. 3a and 4a. Serious errors develop at the shock and prop:s
downstream. Figures 3b and 4b depiiptt) — p(0)| - as a function of time. Figures 3c—e
and 4c—e depict sections ptx, y, t) — p(X, vy, 0) at three different times oriented tangent
to and at a location immediately behind the initial shock location. These times were cho
to be at the beginning and end of the rapid growth of the density perturbation, and at a |
time. Note that the grid perturbation has resulted in a seven orders of magnitude gro
over a very short period of time—three more than should be expected. Various time ¢
sizes were used, ranging from a CFL condition GFI0.05 to the largest corresponding to
CFL=0.5. ltis interesting to note that the rate of growth of the grid perturbation, indicate
in Figs. 3b and 4b, is essentially independent of time step size. For this example,
find that sectiong (X, y, t) — p(X, y, 0) coming from both schemes havelaaracteristic
high frequency component in the crossfloy @irection. Moreover, the nature of this is
essentially independent of the frequency of the grid perturbation. Depending on the (
aspect ratio and pressure ratio of the shock conditions, we observed that it is possible t
offthe instability noted above by applying grid perturbations on the order of double precis
roundoff. However, we have depicted a relatively low frequency grid perturbation in the
examples to help illustrate the high frequency nature of the most unstable modes. It sh
also be noted that for sufficiently small pressure jumps, no instability is observed. Itis a
interesting to note that, and probably not too surprising, the depicted results coming ft
both Godunov and Roe exhibit such similar pathologies when plotted as a function of tin

The next example considered here is based on Roe’s flux employing entropy modifica
(9¢). However, instead of using (10) for the parameatewe taken fixed and equal to 1%
of the fastest wave speed present in the flow. This modification does not yield a stri
upwind flux according to our definition. Nevertheless, &isoststrictly upwind and is at
the same time fully differentiable. The pressure ratio 10 Riemann data used in the previ
two examples is no longer an exact numerical shock for this modified flux. Therefo
we determine an essentially exact numerical shock profile by one space dimensional
iteration. The resulting converged profile has an obvious middle state with a negligi
downstream tail. This one-dimensional numerical shock profile is then inserted as ini
data to a two-dimensional calculation employing the perturbed grid (11). After seve
forward Euler iterations on the perturbed grid, we again observe the rapid and unaccept
growth of certain modes; see Figs. 5a—e. The characteristic crossflow high frequency m
found in the earlier examples are again present, albeit the rate of growth of these mod
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FIG. 3. 1D stationary shock breakdown from Godunov’s scheme: (a) Mach contours of the deterior:
solution; (b) log, [|p(t) — p(0) || VS time; (c)p (11, y, 7) — p(11, y, 0); (d) p(11, y, 30) — p(11, y, 0); (e) p(11,
Y. 76.5) — p(11,y, 0).

somewhat slower. Clearly, one should expect that varyiwgl have a significant effect on
this example. In fact, takingin (9c¢) fixed and equal to 50% of the fastest wave speed pres
in the flow yields the Lax—Friedrichs numerical flux. Following the same procedure for
Lax—Friedrichs flux as outlined above results in a perturbed solution that does not exhibi
large-scale deviation from the initial one-dimensional (but poorly resolved) shock prof
The results from all strictly upwind modifications of Roe’s flux defined by (9)—(1(
exhibit more or less the same behavior as the example depicted in Fig. 5. The
sity perturbation coming from flux (9b)—(10) grows more slowly than already seen ¢
the exponential growth is delayed by several hundred iterations. Surprisingly, the grc
from schemes defined by (9a)—(10) and (9c)—(10) is faster and occurs earlier comy
to (9b)—(10). Normally, one expects that a linearly unstable scheme slhoid up
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FIG. 4. 1D stationary shock breakdown from Roe’s scheme: (a) Mach contours of the deteriorated solut
(b) logy, o1 — POl Vs time; (¢) p(1L Y, 7) — p(1L Y, 0); (d) p(11Yy.30) —p(1Ly.0); (€) p(1Ly.
76.5) —p(11y, 0).

immediately. We should remark, however, that none of the proposed modifications to R
scheme defined in (9)-(10) are everywhere differentiable. Moreover, the prescribed
oscillation does not directly excite an unstable mode (see Section 4). The following 1
leads us to believe that the observed growth is, in fact, linear in nature. We compu
s =U(t) — U(0) at a time when the exponential growth first appears. The calculation w
then reinitialized on the nonperturbed grid by taking initial dgt®) 4+ § with § scaled
down so thats| <107°. This initial data yields an immediate and clearly recognizabl
exponential instability.

We conclude this section by considering one additional numerical flux function: v
Leer’s nonstrictly upwind flux (8.vL). Exactly the same procedure as described in th
previous example is followed to set up this perturbed two-dimensional shock tube exam
As was shown in the previous section, van Leer’s flux offers a significant amount of sh
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FIG. 5. 1D stationary shock breakdown from an entropy corrected variant of Roe’'s scheme: (a) M
contours of the deteriorated solution; (b) Jptlo (t) — p(0)|l Vs time; (C)p(AL Yy, 7) — p(11 y, 0); (d) p(11,
¥,30 —p(11,y, 0); (6) p(1L, y, 76.5) — p(11, y, 0).

wave dissipation. In fact, its dissipation matrix is everywhere of full rank. We shol
therefore expect significant smoothing of high frequency crossflow modes if any are pre
in the computed solution. The results for this example are depicted in Figs. 6a—e and shc
evidence of the carbuncle phenomenon. (In fact, we carried this calculationtca2800
with no further growth in the quantities already depicted.) Note that in Figs. 6c—e
crossflow sections are smoattodulothe grid low frequency and the density perturbation
near the shock decrease in time.

4. INSTABILITY FROM STRICTLY UPWIND SCHEMES: LINEAR ANALYSIS

We analyse the instability found in the two-dimensional shock tube examples of
previous section by linear analysis. As seen there, numerical experiments indicate a s
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FIG. 6. Van Leer's scheme shows no evidence of breakdown: (a) Mach contours of the solutic
(b) logy, o1 — POl Vs time; (¢) p(1L Y, 7) — p(1L Y, 0); (d) p(11Yy.30) —p(1Ly.0); (€) p(1Ly.
76.5) —p(11y, 0).

possibility that many, if not all, strictly upwind fluxes are somehow flawed when applie
to certain flow situations and, as earlier noted, all strictly upwind schemes share a com
truncation error equation (4). The goal here, therefore, is to show that the linearizatior
the truncation error equation is itself unstable for the given shock tube flow. We assume
(4) admits a one-dimensional stationary viscous shock pidfie y, t) = T (x) satisfying

0 f(T) = le 0 |A(T)|8T lim T(x)=U

X 277 0x X ) x—doo T
(see [14], for example), wher&[ ., U, ] defines a stationay shock. Since a stationary
k-shock must satisf(U_o) > 0 > Ac(Uioo), itis clearig(T) is zero somewhere along
a trajectory joinindJ_, to U, . Therefore, at some point alofigx), the matrix| f'(T)|
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must be singular and cannot be everywhere differentiable. For this reason, we rej
the absolute value function in (3) with the smoothed versio9) for the associated
eigenvaluevy, wheren is taken to be constant with valugl0 the maximum value df|.
By doing this, the term above modelling strictly upwind dissipatigiT)|=|f'(T)|s is
nonsingular and differentiable. Linearizing about this one-dimensional solution, we |
thatU(x, y,t) = T(X) + §(X, vy, t), where the perturbatiohsolves

38 1 1 828
ﬁJr—(f M +g (T)— = EAX_ (IA(T)|—+IA(T)| = 8) +5 AyIB(T)I—
(12)
In the equation above, the math(T)|’ is given by
,0T _ 0 8_Tk
[|A(Tn 5;}Lj 25:31-' A k()] (13)

When the truncation error equation (4) is scalar, itis a relatively routine exercise to ve
thatthe solutioid to the linearization (12) satisfies the stability estinjiate) || .1 < [|8(0)|| .
This follows from standarti* theory. Moreover, when the truncation error equation appli
to the Euler equations, and when the linearization is carried out around a constant
$ satisfies the stability estimaté(t)|| 2 < const|§(0)| 2. This estimate is easily verified
by recalling the fact that the Euler flux Jacobians (hence, the upwind dissipation matri
can be simultaneously symmetrized. However, this last fact doeisnply stability of the
linearization around a strong shock viscous profile.

Since the grid aligned viscous profilgx) has noy component of velocity, thg dis-
sipation matrix|B(T)| is everywhere multiplicity 2 singular. Moreover, tledissipation
matrix |A(T)| is almost singular near the sonic point within the shock layer. (Note tf
almost singular depends on the amount of smoothing appliefl 0))|.) In the next sev-
eral paragraphs we show that these facts combine to lead to a true instabilitynawhesa
associated to a strong shock.

We assume 1-periodic boundary conditiongim which cases (X, y, t) takes the form

S, Y. 1) = an(x, 1) €¥.

For simplicity, we also assume thaix = Ay. By rescalingx andt and definingNy =
1/(nAy), a typical Fourier coefficient(x, t) is seen to satisfy the one space dimension
equation

0
£+£Mw) (14)

where

9 o T . ™
Ly, (@) = (f (Ma IA(T)IE — |A(T)] x ) + N—y(lg (M + N—yIB(T)I)Ol.

Note that at the discrete leveéll, represents the number of grid spacings within one peric
of the associated crossflow mode. Also note hatis a singular operator with null vector
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oT/ox. This null vector is associated to the translation invariance of the stationary ol
dimensional viscous profile.

We say that the linearization (14) isistableif for some Ny, Ly, has an eigenvaluge
with negative real part. Owing to the complexity of thariable coefficientlinearization
Ly, coming from the truncation error equation applied to the Euler equations, the stabi
of L(Ny) is investigated numerically; (14) is discretized in space by central differencir
with a variety of grid sizes all taken much less than ohg) is obtained by determining
a discrete, one-dimensional, stationary viscous profile to (4) with far-field conditions tt
correspond to a pressure ratio 10 stationary 1-shock. (This is the data that producec
carbuncle flaws illustrated in the shock tube examples of Section 3.) The &30t is
extremely complicated and is therefore approximated by finite differen@e= | T,|10~°).
The stability of the evolution equation (14) is measured by approximating the value
MaXieo (L) le~*| by a method similar to the power method. Specifically, we iterate

k+1 _ Kk k
ay,” =y, — AtLy, (aNy),

with a,?,y = 9T /ox and withAt <« 1 well within theCFL limit. After iterating away modes
that are least significant, we measure

max |et| &
AeU(L'Ny)

[ maXsy | (@, )|

1/At
Y = u(Ny) with KAz = 10,
maXx.y) |(aﬁy l)1|] ’

where(x); denotes the density componenuofThis measure is reasonable since for large
K the major bulk ofx is contained in the eigenvector to Ly, with eigenvalues having
the most negative real part. Assuming this eigenvalue is simple,

a,ﬁy ~ ek = = Aty ) = 1 — At 2 (1 - Arx)aﬁy‘l.
So we are essentially measuring
11— ATA|YAT ~ |7

Figure 7a depicts log scale plots of may |(oe"Ny)1|/ maXy, y) |(a‘§,y)1| versust =kAt
for a variety of crossflow perturbations applied to the one-dimensional, pressure ratio
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FIG. 7. The (in)stability of the linearized truncation error equation applied to the pressure ratio 10 station
shock profile: (a) Growth oy, vs timez; (b) v(N,) vs. Ny.
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viscous shock profile. Figure 7b depicts the stability nunigdl,) as a function ofN,. Re-
call thatNy represents the number afy grid spacings contained within a crossflow mode
Therefore,Ny = 2 is associated to the highest frequency supported by an upwind sch
modeled by the truncation error equation (4). This high frequency mode is clearly
stable. We should note, however, the instability decreases and eventually vanishes
the calculation is performed around weaker shock profiles. Moreover, note that lo
frequency crossflow modedNy =4, 6, ...) produce weaker instabilities for the pressur
ratio 10 profile, and the instability vanishes for &l|, > 20. To confirm that these nu-
merically generated results are real and not due to discretization error or numerica
stability, we note that essentially identical results are obtained by reducing the sj
step size by a factor of 10, as well as reducing plaeabolic CFL number by a factor
of 10.

We admit that the argument presented above does not constitute a mathematical
that all (or even some) strictly upwind numerical schemes are unstable when applie
strong, stationary, or slowly moving, grid-aligned shocks to the Euler equations in m
than one space dimension. Only a generic truncation error equation was considerec
higher order terms that would more accurately describe a particular upwind numel
flux function were neglected altogether. Nevertheless, the linear instability result |
sented above is in remarkable qualitative agreement with numerical results present
the literature [15], as well as the unstable shock tube examples presented in the pre
section.

5. MULTIDIMENSIONAL DISSIPATION

As mentioned in the last paragraph of the previous section, the studied truncation «
equation lacks higher order terms that are necessary to identify a specific one-dimens
upwind numerical flux function. However, this weakness only concerns the flux in
flow (x) direction. SinceT (x) is constant iny for the studied shock tube example, the
crossflow(y) flux, based on any one-dimensional strictly upwind flux formulation is inde«
accurately modeled in (12). For the Euler equations, the numerical dissipation modele
|B(U)| is singular when the fluid’y component of velocity is zero, and moreover, thi:
is true in the shock layer where the problem becomes most stiff. We are therefore
to consider a multidimensional modification to the traditional dimension by dimens
upwind approach. In this section, we first consider a technique to stabilize the trunce
error model problem studied in Section 4. Using this technique as a guide, we develop a
simple multidimensional modification to the Roe’s scheme entropy correction technic
(9)—(10) introduced in Section 2, and we show the performance of a modified schem
the numerical examples used previously to demonstrate instability.

Some observations are in order at this point. First, if the maixd)| oxT (X) in the
linearization (12) is neglected, the instability observed in the previous section is el
nated. This is true regardless of the strength of the shock profile that the linearizatic
performed about. It is also worth noting that|i&(T)| were not smoothed (i.e. cut off
from being singular), as was done in the model linearization, the &gfinix) would be
unbounded at some point within the shock layer. Second, the unstable eigenvectors 1
linearized model problem (12) are always highly oscillatory in the crossflow directic
To stabilize the model problem, it seems natural to attempt to damp these characte
crossflow oscillations. This can be accomplished by the inclusion of additional crosst
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dissipation,
IB(M)| = 1g'(M)| +d(x, y)I
with d(x, y) > 0. Note that only they direction dissipation is modified here, leaving the

shock profileT (x) unaffected. Since one expects the magnitud® d{x) to play a role in
the magnitude of the oscillations (instability), it seems natural to take

d(x,y) ~ Ax

il

Terms on the order ok xd, T (X) are computed by a typicatdirectional entropy correction;
recalln(U_, Ugr) in Eq. (10). Therefore, we propose a crossflow dissipation modificatic
to the truncation error model problem given explicitly by

BT, x| = g (M) + ma{ %m‘ (15)

Itis of value to check what effect (15) has on the stability of the linearization to the moc
truncation error equation studied in the previous section; (15) is indeed a multidimensic
dissipation since thg-directional dissipation depends on the solution variation inxthe
direction. It is worth stressing, however, that this modification leaves the one-dimensic
profile T (x) fixed. Following exactly the same procedure described in Section 4, we calcul
the modified model’s stability. Figure 8 depicts the growth of most oscillatory crossflc
perturbations. Comparing with Fig. 7, we see that previously the ngde 2 grew by a
factor of 100 in 10 units of time, whereas here it decayed.

The multidimensional modification derived and analyzed above for the model proble
is extended to Roe’s scheme by the following procedure. Consider a typical cell interf
lit1/2,j; see Fig. 9. First compute

1
M2 =5 mlaX(IM(Ui+1,j, Nit1/2,i) — M (Ui j, N2 )D.

Note thatyi 1,2 j has already been seen in the one-dimensional entropy correction (10).
now propose the following very simple multidimensional modification [10] to the elemen

10
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2 3 4 5 6 7 8 9 10 11 12

FIG. 8. Growth OfaNy vs timer for the modified scheme.
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FIG. 9. A two-dimensional cell interface.

1| to the diagonal part of Roe’s upwind dissipation matrix in (8.R): For every cell interfa
symmetrically calculate

H
Mt1/2,) = MaX®it1/2,j, M,j+1/2, M, j-1/2, Mi+1,j+1/25 Ni+1,j-1/2) (16)

and use;iil/zq j to determing’, | according to one of the entropy corrections suggested
(9). These formulations consist of introducing the largest 1D entropy correction from
neighboring cell interfaces. (We call this tik&-correction from its appearance in Fig. 9.)
This approach leaves perfectly one-dimensional profiles absolutely unaffected.

We now apply the simpléi-corrections (16) to the two Euler equation examples intrc
duced earlier. In both cases, we evaluate the upwind dissipation matrices in (8.R) at the
averagdJy. The pressure ratio 10 shock tube example from Section 3 is solved this t
with the H-correctionyt above, in conjunction with entropy correction (9b). Figure 10
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FIG. 10. Results of the pressure ratio 10 shock tube example employinddtherrection: (a)p (11, y,
229 — p(11, y, 0); (b) Mach number contours at=2290.
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...........

FIG. 11. Contour lines of Mach number for the Mach 15.3 cylinder with Roe’s scheme employing tt
H-correction: (a) Only the upper half of the domain is displayed; (b) Close-up of the stagnation point.

depicts the sectiop (11, y, 229 — p(11, y, 0). Comparing this to the sections given in
Fig. 4, we see the almost complete elimination of the high frequency modes associate
the linear instability. Figure 10b depicts Mach number contouts-a229. The robustness
of this new approach was checked and is evidently robust for a variety of shock streng
Figure 11 depicts the converged solution to the Mach 15.3 flow around a cylinder previot
seen in the introduction of this paper, this time, however, usingftterrection with (9b).
Comparing this to the solution depicted in Fig. 1b, we see that the carbuncle is comple
eliminated and the shock is resolved in two points at the point where the flow is gr
aligned.

Additionnally, Pandolfi in [12] successfully adapted tHecorrection to an Osher-like
scheme.

6. EXTENSION TO HIGHER ORDER WITH APPLICATION

In order to get accurate results while simulating chemically reacting flows, for exampg
the numerical method has been upgraded to a second order accurate in space anc
version. The second order accuracy in time is performed via a two step Runge—Ki
scheme. High order accuracy in space is achieved by computings U, ; ; and Up
as Uﬁj given by Turkel and van Leer’s = 1/3 reconstruction [19] (done dimension by
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dimension),
_ 1 1
UI j = Ul J :__))Sj ESFJ
1 1
+ —
Ulj _U|J+§S|,—j+6$p
where
R minmod( RflAUi_l/z_j , RilAUH_l/zyj)
(17)

S =
$j =R minmod( R_lAUi+1/2_j , R_lAUi_l/gyj)

and whereR is the matrix of right eigenvectors @y F evaluated at cell centers, and

AUi_12; = Ui j — Uiy
AUit12j = Uiy j — Uij.

The minmod function reads:
a ifljaj<|bl, a-b>0,

b if |b] <lal, a-b> 0,

minmoda, b) =
0 ifa-b<O.
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Inthe present work, the computations have been doneawith2.0, which results in 3VD
reconstruction for the one-dimensional constant coefficient problem.
The H-correction presented in Section 5.

Il = [} (Uwm, N + nilll/Z,j

is easily extended to this higher order scheme, where the corrggtign ; occurring in (16)
is computed with theeconstructed variables Y andUg at each cellinterfacé + 1/2, j):

1
M+1/2) = 5 mlax(|/\| (Ur, Nit1/2,j) — A (UL, Nigay2 D).

Note that in order to avoid calculating the true Roe average when evaluating the dissipa
matrix |A(Uy, Ur, n)| in (8.R), we evaluateR(U, n) and (U, n) at the simple average
(U=1/2(U_ + UR).

6.1. Chemically Reacting Hypersonic Flows

The higher order scheme above is applied to the computation of compressible none
librium flows. Specifically, we compute a high Mach number flow past a blunt body sim
lating its reentry into the Earth’s atmosphere. Such a simulation requires one to take intc
count real gas effects and their interaction with the flow dynamics at high velocity anc
atmospheric density. It has been shown that by not considering the nonequilibrium eff
behind a strong shock wave, very high computed temperature results behind the shock
25,000 K temperature behind a Mach 25 shock) and does not correspond to the phy
characteristics of the flowfield. One of the most important nonequilibrium effects is t
chemical reactions between the different species present in the airflow. Because of the
thermal agitation behind the shock wave, the molecules dissociate. Since the dissocic
reactions are endothermic, the temperature behind the shock is lower than that obta
without the chemical reactions. The air behind the shock wave must then be regarde
a mixture composed of the classical 5 species, governed by the usual 17 chemical
tions model, whose chemical rate constants are given by Gardiner’s model [3]. Theref
the partial densitieps appearing in Eq. (5) arer = po,, p2 = PN,, £3= pNOs P4 = po, and
05 = pn, and the chemical source vector reads

t
Q = (wo,, wN,, WNO, @0, @N, 0, 0)".

Each reactiom can be written as

Kfr(T)

szrAerv A, r=1...,17,
Kpr(T) s=1

where As represents each of the 5 specigs, andvg, are the stoechiometric coefficients
corresponding to the reactionand to the species, and K¢, (T) and Ky, (T) are the
forward and backward kinetic rate constants. It follows that the source term of each m
conservation equation, i.e. the mass production rate of each sgec@sbe written as

17 > Vi/.r S " 1)i,‘/r
0 = Ms (0, — 1) le,rm I1 (ﬁ) — Ko, (] (hp/l—)
r=1 i=1 : i=1 :
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FIG. 12. Mach number isocontours for the 3D axisymmetric Mach 15.3 reacting flow around a spher
second-order simplified scheme: (a) Typical 1D entropy correctiortifoprrection.

whereM;s is the molar mass of the speciedn Gardiner's modelK ¢, (T) is given by

6
Kir(T) =0, T# exp(—%) ,

whereo; andg, are Gardiner's constants, afig is the characteristic temperature of disso
ciation of the moleculs. In order to respect the equilibrium ratg, (T) for the reaction
r, the backward kinetic rate constagg  (T) is computed as

Kf,r(T)

Kpr(T) = K4(T)
eq

One notes that the chemical reaction rat&lepends ops ande via the temperaturé that
is deduced from the expression of internal energy,

5 5
1
x%=pe—§MVV=§:m%T+§:m@,
s=1 s=1

wherec,, is the mass heat at constant volume (equélﬁgfor diatomic species O%RS for
monatomic speciesRs = (R/Ms) (with R the perfect gas constant aitl the molecular
mass of the species); h? is its heat of formation. The sound speeds not computed
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through an “equivalent” gammpa formulation, as proposed by Gnoffo in [4], but it is the
true sound speed computed from equat{ém), whereP = >"_ psRsT. The derivatives
of P appearing in(6m) include the derivatives of with respect tops and toe. These
derivatives are obtained by deriving the expression of internal energy with respeeirtd
then with respect te.

6.2. Numerical Results with Chemical Nonequilibrium

To illustrate our work, we present hereafter results of numerical simulation of chemica
reactive inviscid hypersonic flow past a 3D axisymmetric sphere whose radius is 6.35r
The computational domain is a 9632 point grid. The upstream conditions are

Mo =153, Py =664Pa, T, =293 K, Xo,eo =21% Xn,eo = 79%

where X is the molar fraction of species These conditions correspond to experimen:
tal conditions found in Lobb [9]. The computation is carried out by the finite volum
method, where the numerical fluxes are computed as outlined above with left and ri
values reconstructed by the high order method (17). The chemical source terms are tre
semi-implicitly with one Newton step applied per time step. Two series of computatio
have been conducted witla) the monodimensional entropy correction (9@ the H-

correction variation of (9a). The corresponding results are presented below. The figt
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FIG. 13. Molecular nitrogen mass fraction isocontours for the 3D axisymmetric Mach 15.3 reacting fl
around a sphere—second-order simplified scheme: (a) Typical 1D entropy correctibing@jection.

only display a fraction of the computational domain focusing on the stagnation poin
the flow. First, we show in Figs. 12a and 12b a comparison of Mach number contc
obtained, respectively, with the typical monodimensional entropy correction and with
new H-correction method. In Figs. 13a and 13b, we present isocontours of moleculal
trogen mass fraction. Note that in Figs. 12a and 13a, the carbuncle is present but ap
much weaker than observed in other examples presented in this paper. This is not a
of the chemistry, but rather typically seen when performing axisymmetric calculations
Figs. 12b and 13b, there is no trace of the carbuncle coming froid tberrection scheme.

These results are comparable to those found in the literature [18].

In the present work, however, we observe that with first-order accurate in space sche
the atom conservation law is numerically verified, but it is not with high order accur
in space schemes. From this observation, we could say that the nonconservation of :
comes from the high order reconstruction. Indeed, the slSppsmdej may not have
the same behavior for each variaple Therefore, the minmod function would not apply in
the same way to these slopes, and consequently, the ratio of the number of nitrogen :
to the number of oxygen atoms would no longer be constant. To overcome this problen
have recomputed two slop&s (17) as functions of the other three via the usual expressio
of dependance between the five species [1]. With this modification, the atoms are cons
to 10-°, while without modifying the high order reconstruction, the atom conservation w
only satisfied to 10%.
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